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LETI'ER TO THE EDITOR 

The k dependence of the long-time diffusion in systems of 
interacting Brownian particles 

F Griiner and W Lehmann 
Universitat Konstanz, Fakultat fur Physik, Bucklestrafle 13, 7750 Konstanz, West 
Germany 

Received 31 July 1979 

Abstract. The short- and long-time diffusion coefficients in suspensions of charged poly- 
styrene spheres were determined by means of photon correlation spectroscopy. Five 
different concentrations were measured. The results are discussed in a memory function 
formalism. It is shown that all concentrations and previously published data from different 
particles fit the same universal function. 

1. Introduction 

It is well known that in the presence of interaction between macromolecules the 
collective diffusion coefficient is affected considerably, both in its magnitude and in its 
time dependence. The best experimental tool to study this phenomenon is quasi-elastic 
light scattering. By this technique, Brown et ul(1975) verified the short-time behaviour 
of the diffusion coefficient to be Do/S(k) .  Do is the free particle diffusion coefficient, 
S ( k )  the static structure factor. This result was supported theoretically by Pusey (1975), 
who also observed (Pusey 1978) a long-time tail in the correlation function. The same 
results were published by Dalberg er ul (1978). 

Studying the concentration dependence of the long-time tail, we found that there 
are differences in the k dependence between short- and long-time behaviour of the 
correlation function. So we looked for a more detailed description of the dynamics of 
such systems of interacting Brownian particles. The timescales involved are defined by 
two collision times: T ~ ,  the typical time describing collisions between macromolecules 
and solvent molecules; and Tint, the time describing collisions between the Brownian 
particles. Whereas TC is estimated to be of the order of lO-'Os, which is not covered by 
correlation spectroscopy, Tint is governed by the motion of the particles and leads to a 
random interacting force varying on the same timescale as the diffusion itself. This 
force is most conveniently expressed in terms of a memory function in the generalised 
Langevin equation, leading to the following equation of motion for the correlation 
function g(7): 

(1) 
d 

-g(T)  dT = - a ( k ) g ( T ) -  [TdrM(f)g(T-f), 0 

where 

R(k) = D o k 2 / S ( k )  = Desk2, 

0205-4470/79/110303 +05$01.00 @ 1979 The Institute of Physics L303 



L304 Letter to the Editor 

and g ( r )  is the particle density correlation function which is proportional to the field 
correlation function of the scattered light. The memory function M ( t )  describes the 
dynamics of the particle interaction. It should be noted that the memory function 
introduces a non-Markov process which might affect the application of the Siegert 
relation. In the limit of very short times, however, the additional term in (1) vanishes, 
and for very long times the Markov approximation is applicable, so that in both limiting 
cases, r-fO and T - ~ O O ,  the correct result should be reproduced by measuring the 
intensity correlation function and applying the Siegert relation. 

The short-time diffusion coefficient is given by the first cumulant O(k) of g(7). For 
the long-time diffusion coefficient DL, we use the definition of the cullective diffusion 
coefficient in the hydrodynamic limit given by Dieterich and Peschel (1979). If the 
Markov approximation is applicable for k # 0, DL is given by 

where M ( k ,  z )  is the Laplace transform of the memory function defined in equation (1). 

2. Experimental details 

From our experimental data we were able to determine the memory function at w = 0 
for different particle concentrations as a function of k.  The particles used were 
0.045 Fm radius polystyrene spheres supplied by Dow. They were suspended in water, 
which was de-ionised by a mixed-bed ion-exchange resin. Five different concentrations 
were prepared; the static structure factors are shown in figure 1. The dynamical 
measurements were performed using a 4000-channel correlator and analysed using a 
multiexponential-fit procedure (Provencher 1976). Both the static structure factors 
and the intensity correlations were corrected for multiple scattering as described by 
Griiner and Lehmann (1979). The corrected intensity correlation functions were then 
analysed using the Siegert relation and again fitting several expanentials. 

We thus obtain an analytical representation of the field correlation function: 

i i 

From this model function the short- and long-time diffusion coefficients are easily 
calculated as the first cumulant 

and as the limit w = 0 of the Fourier transform of gl (T) ,  the dynamic structure factor 
S(k ,  w ) :  

ai 1 
DLk2 = - ci cyi/ri. 

S ( k )  .) = I - S ( k )  E -, 1 
lim S(k ,  w )  = -( 
0-0  T D L ( k , w = O ) k  T i Ti 

It should be emphasised that the long-time diffusion coefficient is not given by the 
long-time tail of the correlation function, but represents a s u m  over the total time 
evolution of the correlation function, in contrast to the interpretation of Pusey (1978) 
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Figure 1. Measured static structure factors after correction for multiple scattering of the 
samples used in the experiments. Particle radius: 0.045 km. Concentrations (10” m1-’): 
1,2*53; 2,5*06; 3,7.59; 4, 10.12; 5, 12.65. 

and Dalberg et a1 (1978). From the measured quantities DS and DL, the memory 
function in the zero-frequency limit can be determined to be 

M ( k ,  w = 0) = (DL--DS)k2. 

We define a reduced memory function M’(k, w = 0) by 

(7) 

This function is plotted in figure 2 over the reduced wavevector k/kmax, where k,, is 
the peak position in the static structure factor. 

The surprising result is that all data from five different concentrations fit the same 
universal function M’(k, w = 0). This leads to the conclusion that the shape of M’ 
depends only on the shape of the interacting potential, and the concentration depen- 
dence enters only in km,. In the same figure we have plotted the data of Pusey (1978) 
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F w e  2. The reduced memory function M'(k, o = 0): @ sample 1; 0 sample 2; 9 sample 
3 +4;  0 sample 5. Sample numbers refer to figure 1. Data from h s e y  (1978), uncorrected 
(+) and corrected for multiple scattering (+I. 

obtained with particles of radius 0.025 pm, analysed according to equations (3, (6) and 
(7a), once without correction for multiple scattering and once with a crude correction 
for multiple scattering, done in the following fashion. Taking the three corrected values 
given by Pusey, we have made a linear interpolation of the correction factor for Deff. 
The result shows satisfactory agreement with our data. Thus we conclude that the 
particle size has a minor influence on the reduced memory function. It should be 
emphasised that our data for Deff were always checked against the measured S ( k )  to 
minimise the errors due to multiple scattering. 

The memory function shows a pronounced peak at k = k,,, which is reasonable 
since for fluctuations on a lengthscale of the order of the mean particle distance the 
strongest influence of the interaction is expected. At larger k values, that is, shorter 
characteristic length, M'(k, w = 0) dies off slowly with an approximate power law of 
(k/k,,)-'. It is only in this region where the simple picture of a particle fluctuating in a 
'cage' of its neighbours holds. If the characteristic length of the fluctuation becomes 
larger, the interaction effects become stronger and the memory function increases, 
indicating that the system remembers the earlier state and needs a longer time to relax 
to equilibrium. At k values around and before the peak of S(k) this picture no longer 
holds since the particles are indistinguishable. Thus, at characteristic lengths compar- 
able with or greater than the mean interparticle distance, several particles are involved, 
and in the limit of very long fluctuations a mean over a large number of particles is 
involved. This is conveniently described by the mean field value Do/S(k ) ,  and thus the 
memory function has to vanish at k + 0, which is indeed observed. 
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3. Conclusions 

L307 

We have shown that in the long-time limit the dynamics of interacting Brownian 
particles may be described by the static structure factor S ( k ) ,  which gives the concen- 
tration dependence, and a memory function M’(k, w = 0), independent of concen- 
tration and particle size, describing the dynamical aspects of the repulsive interaction 
potential. 

An analysis of our data at finite frequencies is in progress and will be given later. 
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